SVG 2 – 28 July 2016 TopContentsPreviousNextElementsAttributesProperties

Chapter 9: Basic Shapes

9.1. Introduction and definitions

basic shape
shape
shape elements
A graphics element that is defined by some combination of straight lines and curves. Specifically: circle, ellipse, line, mesh, path, polygon, polyline and rect.

SVG contains the following set of basic shape elements:

Mathematically, these shape elements are equivalent to a path element that would construct the same shape. The basic shapes may be stroked, filled and used as clip paths. All of the properties available for path elements also apply to the basic shapes.

The equivalent path and algorithm to compute the stroke for each shape are defined in the shape sections below.

9.2. The ‘rect’ element

The rect element defines a rectangle which is axis-aligned with the current local coordinate system. Rounded rectangles can be achieved by setting non-zero values for the rx and ry geometric properties.

rect
Categories:
Graphics element, renderable element, shape element
Content model:
Any number of the following elements, in any order:clipPath, marker, mask, script, style
Attributes:
Geometry properties:
DOM Interfaces:

The x and y coordinates refer to the left and top edges of the rectangle, in the current user coordinate system.

The width and height properties define the overall width and height of the rectangle. A negative value for either property is illegal and must be ignored as a parsing error. A computed value of zero for either dimension disables rendering of the element.

For rounded rectangles, the computed values of the rx and ry properties define the x- and y-axis radii of elliptical arcs used to round off the corners of the rectangle. The arc are always symmetrical along both horizontal and vertical axis; to create a rectangle with uneven corner rounding, define the shape explicitly with a path. A negative value for either property is illegal and must be ignored as a parsing error. A computed value of zero for either dimension, or a computed value of auto for both dimensions, results in a rectangle without corner rounding.

The used values for the x- and y-axis rounded corner radii may be determined implicitly from the other dimension (using the auto value), and are also subject to clamping so that the lengths of the straight segments of the rectangle are never negative. The used values for rx and ry are determined from the computed values by following these steps in order:

  1. If both rx and ry have a computed value of auto (since auto is the initial value for both properties, this will also occur if neither are specified by the author or if all author-supplied values are invalid), then the used value of both rx and ry is 0. (This will result in square corners.)
  2. Otherwise, convert specified values to absolute values as follows:
    1. If rx is set to a length value or a percentage, but ry is auto, calculate an absolute length equivalent for rx, resolving percentages against the used width of the rectangle; the absolute value for ry is the same.
    2. If ry is set to a length value or a percentage, but rx is auto, calculate the absolute length equivalent for ry, resolving percentages against the used height of the rectangle; the absolute value for rx is the same.
    3. If both rx and ry were set to lengths or percentages, absolute values are generated individually, resolving rx percentages against the used width, and resolving ry percentages against the used height.
  3. Finally, apply clamping to generate the used values:
    1. If the absolute rx (after the above steps) is greater than half of the used width, then the used value of rx is half of the used width.
    2. If the absolute ry (after the above steps) is greater than half of the used height, then the used value of ry is half of the used height.
    3. Otherwise, the used values of rx and ry are the absolute values computed previously.

Mathematically, a rect element is mapped to an equivalent path element as follows, after generating absolute used values x, y, width, height, rx, and rx in user units for the local coordinate system, for each of the equivalent geometric properties following the rules specified above and in Units:

  1. perform an absolute moveto operation to location (x+rx,y);
  2. perform an absolute horizontal lineto with parameter x+width-rx;
  3. if both rx and ry are greater than zero, perform an absolute elliptical arc operation to coordinate (x+width,y+ry), where rx and ry are used as the equivalent parameters to the elliptical arc command, the x-axis-rotation and large-arc-flag are set to zero, the sweep-flag is set to one;
  4. perform an absolute vertical lineto parameter y+height-ry;
  5. if both rx and ry are greater than zero, perform an absolute elliptical arc operation to coordinate (x+width-rx,y+height), using the same parameters as previously;
  6. perform an absolute horizontal lineto parameter x+rx;
  7. if both rx and ry are greater than zero, perform an absolute elliptical arc operation to coordinate (x,y+height-ry), using the same parameters as previously;
  8. perform an absolute vertical lineto parameter y+ry
  9. if both rx and ry are greater than zero, perform an absolute elliptical arc operation with a segment-completing close path command, using the same parameters as previously.

Path decomposition resolved during teleconference on June 3rd, 2013.

Example rect01 shows a rectangle with sharp corners. The rect element is filled with yellow and stroked with navy.

<?xml version="1.0" standalone="no"?>
<svg width="12cm" height="4cm" viewBox="0 0 1200 400"
     xmlns="http://www.w3.org/2000/svg" version="1.1">
  <desc>Example rect01 - rectangle with sharp corners</desc>

  <!-- Show outline of viewport using 'rect' element -->
  <rect x="1" y="1" width="1198" height="398"
        fill="none" stroke="blue" stroke-width="2"/>

  <rect x="400" y="100" width="400" height="200"
        fill="yellow" stroke="navy" stroke-width="10"  />
</svg>
Example rect01 — rectangle with sharp corners

Example rect01

View this example as SVG (SVG-enabled browsers only)

Example rect02 shows two rounded rectangles. The rx specifies how to round the corners of the rectangles. Note that since no value has been specified for the ry attribute, the used value will be derived from the rx attribute.

<?xml version="1.0" standalone="no"?>
<svg width="12cm" height="4cm" viewBox="0 0 1200 400"
     xmlns="http://www.w3.org/2000/svg" version="1.1">
  <desc>Example rect02 - rounded rectangles</desc>

  <!-- Show outline of viewport using 'rect' element -->
  <rect x="1" y="1" width="1198" height="398"
        fill="none" stroke="blue" stroke-width="2"/>

  <rect x="100" y="100" width="400" height="200" rx="50"
        fill="green" />

  <g transform="translate(700 210) rotate(-30)">
    <rect x="0" y="0" width="400" height="200" rx="50"
          fill="none" stroke="purple" stroke-width="30" />
  </g>
</svg>
Example rect02 — rounded rectangles expressed in user coordinates

Example rect02

View this example as SVG (SVG-enabled browsers only)

9.3. The ‘circle’ element

The circle element defines a circle based on a center point and a radius.

circle
Categories:
Graphics element, renderable element, shape element
Content model:
Any number of the following elements, in any order:clipPath, marker, mask, script, style
Attributes:
Geometry properties:
DOM Interfaces:

The cx and cy attributes define the coordinates of the center of the circle.

The r attribute defines the radius of the circle. A negative value for either property is illegal and must be ignored as a parsing error.

Mathematically, a circle element is mapped to an equivalent path element that consists of four elliptical arc segments, each covering a quarter of the circle. The path begins at the "3 o'clock" point on the radius and proceeds in a clock-wise direction (before any transformations). The rx and ry parameters to the arc commands are both equal to the used value of the r property, after conversion to local user units, while the x-axis-rotation, the large-arc-flag, and the sweep-flag are all set to zero. The coordinates are computed as follows, where cx, cy, and r are the used values of the equivalent properties, converted to user units:

  1. A move-to command to the point cx+r,cy;
  2. arc to cx,cy+r;
  3. arc to cx-r,cy;
  4. arc to cx,cy-r;
  5. arc with a segment-completing close path command.

Path decomposition resolved during teleconference on June 3rd, 2013.

Example circle01 consists of a circle element that is filled with red and stroked with blue.

<?xml version="1.0" standalone="no"?>
<svg width="12cm" height="4cm" viewBox="0 0 1200 400"
     xmlns="http://www.w3.org/2000/svg" version="1.1">
  <desc>Example circle01 - circle filled with red and stroked with blue</desc>

  <!-- Show outline of viewport using 'rect' element -->
  <rect x="1" y="1" width="1198" height="398"
        fill="none" stroke="blue" stroke-width="2"/>

  <circle cx="600" cy="200" r="100"
        fill="red" stroke="blue" stroke-width="10"  />
</svg>
Example circle01 — circle filled with red and stroked with blue

Example circle01

View this example as SVG (SVG-enabled browsers only)

9.4. The ‘ellipse’ element

The ellipse element defines an ellipse which is axis-aligned with the current local coordinate system based on a center point and two radii.

ellipse
Categories:
Graphics element, renderable element, shape element
Content model:
Any number of the following elements, in any order:clipPath, marker, mask, script, style
Attributes:
Geometry properties:
DOM Interfaces:

The cx and cy coordinates define the center of the ellipse.

The rx and ry properties define the x- and y-axis radii of the ellipse. A negative value for either property is illegal and must be ignored as a parsing error. A computed value of zero for either dimension, or a computed value of auto for both dimensions, disables rendering of the element.

An auto value for either rx or ry is converted to a used value following the rules given above for rectangles, except without any clamping based on width and height. Effectively, an auto value creates a circular shape whose radius is defined by a value expressed solely in one dimension, allowing you to create circles with radii defined as a percentage of the coordinate system width (a percantage value for rx and an auto value for ry) or height (an auto value for rx and a percantage value for ry).

New in SVG 2. The auto value for rx and ry was added to allow consistent parsing of these properties for both ellipses and rectangles. Previously, if either rx or ry was unspecified, the ellipse would not render.

Mathematically, an ellipse element is mapped to an equivalent path element that consists of four elliptical arc segments, each covering a quarter of the ellipse. The path begins at the "3 o'clock" point on the radius and proceeds in a clock-wise direction (before any transformation). The rx and ry parameters to the arc commands are the used values of the equivalent properties after conversion to local user units, while the x-axis-rotation, the large-arc-flag, and the sweep-flag are all set to zero. The coordinates are computed as follows, where cx, cy, rx, and ry are the used values of the equivalent properties, converted to user units:

  1. A move-to command to the point cx+rx,cy;
  2. arc to cx,cy+ry;
  3. arc to cx-rx,cy;
  4. arc to cx,cy-ry;
  5. arc with a segment-completing close path command.

Path decomposition resolved during teleconference on June 3rd, 2013.

Example ellipse01 below specifies the coordinates of the two ellipses in the user coordinate system established by the viewBox attribute on the svg element and the transform property on the g and ellipse elements. Both ellipses use the default values of zero for the cx and cy attributes (the center of the ellipse). The second ellipse is rotated.

<?xml version="1.0" standalone="no"?>
<svg width="12cm" height="4cm" viewBox="0 0 1200 400"
     xmlns="http://www.w3.org/2000/svg" version="1.1">
  <desc>Example ellipse01 - examples of ellipses</desc>

  <!-- Show outline of viewport using 'rect' element -->
  <rect x="1" y="1" width="1198" height="398"
        fill="none" stroke="blue" stroke-width="2" />

  <g transform="translate(300 200)">
    <ellipse rx="250" ry="100"
          fill="red"  />
  </g>

  <ellipse transform="translate(900 200) rotate(-30)" 
        rx="250" ry="100"
        fill="none" stroke="blue" stroke-width="20"  />

</svg>
Example ellipse01 — ellipses expressed in user coordinates

Example ellipse01

View this example as SVG (SVG-enabled browsers only)

9.5. The ‘line’ element

The line element defines a line segment that starts at one point and ends at another.

line
Categories:
Graphics element, renderable element, shape element
Content model:
Any number of the following elements, in any order:clipPath, marker, mask, script, style
Attributes:
DOM Interfaces:

Attribute definitions:

Name Value Initial value Animatable
x1, y1 <length> | <percentage> | <number> 0 yes
The x- and y-axis coordinates of the start of the line.
Name Value Initial value Animatable
x2, y2 <length> | <percentage> | <number> 0 yes
The x- and y-axis coordinates of the end of the line.

A future specification may convert the x1, y1, x2, and y2 attributes to geometric properties. Currently, they can only be specified via element attributes, and not CSS.

Mathematically, a line element can be mapped to an equivalent path element as follows, after converting coordinates into local coordinate system user units according to Units to generate values x1, y1, x2, and y2:

Because line elements are single lines and thus are geometrically one-dimensional, they have no interior; thus, line elements are never filled (see the fill property).

Example line01 below specifies the coordinates of the five lines in the user coordinate system established by the viewBox attribute on the svg element. The lines have different thicknesses.

<?xml version="1.0" standalone="no"?>
<svg width="12cm" height="4cm" viewBox="0 0 1200 400"
     xmlns="http://www.w3.org/2000/svg" version="1.1">
  <desc>Example line01 - lines expressed in user coordinates</desc>

  <!-- Show outline of viewport using 'rect' element -->
  <rect x="1" y="1" width="1198" height="398"
        fill="none" stroke="blue" stroke-width="2" />

  <g stroke="green" >
    <line x1="100" y1="300" x2="300" y2="100"
            stroke-width="5"  />
    <line x1="300" y1="300" x2="500" y2="100"
            stroke-width="10"  />
    <line x1="500" y1="300" x2="700" y2="100"
            stroke-width="15"  />
    <line x1="700" y1="300" x2="900" y2="100"
            stroke-width="20"  />
    <line x1="900" y1="300" x2="1100" y2="100"
            stroke-width="25"  />
  </g>
</svg>
Example line01 — lines expressed in user coordinates

Example line01

View this example as SVG (SVG-enabled browsers only)

9.6. The ‘polyline’ element

The polyline element defines a set of connected straight line segments. Typically, polyline elements define open shapes.

polyline
Categories:
Graphics element, renderable element, shape element
Content model:
Any number of the following elements, in any order:clipPath, marker, mask, script, style
Attributes:
DOM Interfaces:

Attribute definitions:

Name Value Initial value Animatable
points <points> (none) yes

where:

<points> =
[[<number> ,? <number> ]# ]+

The points that make up the polyline. All coordinate values are in the user coordinate system.

If an odd number of coordinates is provided, then the element is in error, with the same user agent behavior as occurs with an incorrectly specified path element. In such error cases the user agent will drop the last, odd coordinate and otherwise render the shape.

The initial value, (none), indicates that the polyline element is valid but does not render.

A future specification may convert the points attribute to a geometric property. Currently, it can only be specified via an element attribute, and not CSS.

Mathematically, a polyline element can be mapped to an equivalent path element as follows:

Example polyline01 below specifies a polyline in the user coordinate system established by the viewBox attribute on the svg element.

<?xml version="1.0" standalone="no"?>
<svg width="12cm" height="4cm" viewBox="0 0 1200 400"
     xmlns="http://www.w3.org/2000/svg" version="1.1">
  <desc>Example polyline01 - increasingly larger bars</desc>

  <!-- Show outline of viewport using 'rect' element -->
  <rect x="1" y="1" width="1198" height="398"
        fill="none" stroke="blue" stroke-width="2" />

  <polyline fill="none" stroke="blue" stroke-width="10" 
            points="50,375
                    150,375 150,325 250,325 250,375
                    350,375 350,250 450,250 450,375
                    550,375 550,175 650,175 650,375
                    750,375 750,100 850,100 850,375
                    950,375 950,25 1050,25 1050,375
                    1150,375" />
</svg>
Example polyline01 — increasingly larger bars

Example polyline01

View this example as SVG (SVG-enabled browsers only)

9.7. The ‘polygon’ element

The polygon element defines a closed shape consisting of a set of connected straight line segments.

polygon
Categories:
Graphics element, renderable element, shape element
Content model:
Any number of the following elements, in any order:clipPath, marker, mask, script, style
Attributes:
DOM Interfaces:

Attribute definitions:

Name Value Initial value Animatable
points <points> (none) yes

The points that make up the polygon. All coordinate values are in the user coordinate system.

If an odd number of coordinates is provided, then the element is in error, with the same user agent behavior as occurs with an incorrectly specified path element.

The initial value, (none), indicates that the polygon element is valid, but does not render.

A future specification may convert the points attribute to a geometric property. Currently, it can only be specified via an element attribute, and not CSS.

Mathematically, a polygon element can be mapped to an equivalent path element as follows:

Example polygon01 below specifies two polygons (a star and a hexagon) in the user coordinate system established by the viewBox attribute on the svg element.

<?xml version="1.0" standalone="no"?>
<svg width="12cm" height="4cm" viewBox="0 0 1200 400"
     xmlns="http://www.w3.org/2000/svg" version="1.1">
  <desc>Example polygon01 - star and hexagon</desc>

  <!-- Show outline of viewport using 'rect' element -->
  <rect x="1" y="1" width="1198" height="398"
        fill="none" stroke="blue" stroke-width="2" />

  <polygon fill="red" stroke="blue" stroke-width="10" 
            points="350,75  379,161 469,161 397,215
                    423,301 350,250 277,301 303,215
                    231,161 321,161" />
  <polygon fill="lime" stroke="blue" stroke-width="10" 
            points="850,75  958,137.5 958,262.5
                    850,325 742,262.6 742,137.5" />
</svg>
Example polygon01 — star and hexagon

Example polygon01

View this example as SVG (SVG-enabled browsers only)

9.8. The ‘mesh’ element

New in SVG 2.

Added by resolution at the Amsterdam Editor's Meeting in order to distinguish a mesh as a graphics element from mesh as a paint server. Behavior of overflow resolved on the last day.

The mesh element is a wrapper for a meshgradient paint server. Its geometry is determined by the referenced meshgradient.

mesh
Categories:
Graphics element, graphics referencing element, renderable element, shape element
Content model:
Any number of animation elements, descriptive elements, mask, clipPath, marker, script, and style elements, along with zero or one meshgradient element.
Attributes:
DOM Interfaces:
Name Value Initial value Animatable
href URL [URL] (none) yes

An URL reference to a meshgradient paint server.

Refer to the common handling defined for URL reference attributes.

If the href points to a valid meshgradient paint server, use that to render the mesh element; else if the first meshgradient child element is valid use that. Otherwise, the mesh will not render. A non-rendered mesh behaves the same as a path that has a d property with value none. Note: The fill property is not used to define the paint of a mesh, however a mesh may have a stroke and markers positioned using the equivalent path.

The equivalent path consists of a path constructed to match the outer shape of the referenced meshgradient. To construct the path, start at the first corner of the first meshpatch and then walk around the ouside of the meshgradient, adding each linear or Bézier segment encountered to the path. When the starting point is reached, the path should be closed with a segment-completing close path command.

A simple 2x2 patch mesh with a thick black stroke along
       the outside.  A red dot is at the upper left corner and an
       arrow showing the direction the path is constructed.

A 2x2 patch mesh gradient. The equivalent path is shown by the heavy black path. The path starting point is indicated by the red circle and the path direction by the arrow.

Meshes can fold over such that there may be painted regions that are outside the equivalent path. Painting of these regions is controlled by the overflow property. The initial value for this property is visible.

Two simple one patch meshes with thick black strokes along
       the outsides.

Single patch mesh gradient with different values of the overflow property. Left: overflow with value display. Right overflow with value hidden.

A mesh is always painted as if the fill rule is nonzero regardless of the value of the fill-rule property.

9.9. DOM interfaces

9.9.1. Interface SVGRectElement

An SVGRectElement object represents a rect element in the DOM.

interface SVGRectElement : SVGGeometryElement {
  [SameObject] readonly attribute SVGAnimatedLength x;
  [SameObject] readonly attribute SVGAnimatedLength y;
  [SameObject] readonly attribute SVGAnimatedLength width;
  [SameObject] readonly attribute SVGAnimatedLength height;
  [SameObject] readonly attribute SVGAnimatedLength rx;
  [SameObject] readonly attribute SVGAnimatedLength ry;
};

The x, y, width, height, rx and ry IDL attributes reflect the computed values of the x, y, width, height, rx and ry properties and their corresponding presentation attributes, respectively.

9.9.2. Interface SVGCircleElement

An SVGCircleElement object represents a circle element in the DOM.

interface SVGCircleElement : SVGGeometryElement {
  [SameObject] readonly attribute SVGAnimatedLength cx;
  [SameObject] readonly attribute SVGAnimatedLength cy;
  [SameObject] readonly attribute SVGAnimatedLength r;
};

The cx, cy and r IDL attributes reflect the computed values of the cx, cy and y properties and their corresponding presentation attributes, respectively.

9.9.3. Interface SVGEllipseElement

An SVGEllipseElement object represents a ellipse element in the DOM.

interface SVGEllipseElement : SVGGeometryElement {
  [SameObject] readonly attribute SVGAnimatedLength cx;
  [SameObject] readonly attribute SVGAnimatedLength cy;
  [SameObject] readonly attribute SVGAnimatedLength rx;
  [SameObject] readonly attribute SVGAnimatedLength ry;
};

The cx, cy, rx and ry IDL attributes reflect the computed values of the cx, cy, rx and ry properties and their corresponding presentation attributes, respectively.

9.9.4. Interface SVGLineElement

The SVGLineElement interface corresponds to the line element.
interface SVGLineElement : SVGGeometryElement {
  [SameObject] readonly attribute SVGAnimatedLength x1;
  [SameObject] readonly attribute SVGAnimatedLength y1;
  [SameObject] readonly attribute SVGAnimatedLength x2;
  [SameObject] readonly attribute SVGAnimatedLength y2;
};

The x1, y1, x2 and y2 IDL attributes reflect the x1, y1, x2 and y2 content attributes, respectively

9.9.5. Interface SVGMeshElement

An SVGMeshElement object represents a mesh element in the DOM.

interface SVGMeshElement : SVGGeometryElement {};

SVGMeshElement implements SVGURIReference;

9.9.6. Interface SVGAnimatedPoints

The SVGAnimatedPoints interface is used to reflect a points attribute on a polygon or polyline element. It is mixed in to the SVGPolygonElement and SVGPolylineElement interfaces.

Note: In SVG 1.1 SE, the animatedPoints attribute represented the current animated value. In this version of SVG, it is simply an alias for points.

[NoInterfaceObject]
interface SVGAnimatedPoints {
  [SameObject] readonly attribute SVGPointList points;
  [SameObject] readonly attribute SVGPointList animatedPoints;
};

The points and animatedPoints IDL attributes represent the current non-animated value of the reflected attribute. On getting points or animatedPoints, an SVGPointList object is returned that reflects the base value of the reflected attribute.

9.9.7. Interface SVGPointList

The SVGPointList interface is a list interface whose elements are DOMPoint objects. An SVGPointList object represents a list of points.

interface SVGPointList {

  readonly attribute unsigned long length;
  readonly attribute unsigned long numberOfItems;

  void clear();
  DOMPoint initialize(DOMPoint newItem);
  getter DOMPoint getItem(unsigned long index);
  DOMPoint insertItemBefore(DOMPoint newItem, unsigned long index);
  DOMPoint replaceItem(DOMPoint newItem, unsigned long index);
  DOMPoint removeItem(unsigned long index);
  DOMPoint appendItem(DOMPoint newItem);
  setter void (unsigned long index, DOMPoint newItem);
};

The behavior of all of the interface members of SVGPointList are defined in List interfaces.

This specification imposes additional requirements on the behaviour of DOMPoint objects beyond those described in the the Geometry Interfaces specification, so that they can be used to reflect points attributes.

Every DOMPoint object operates in one of three modes. It can:

  1. reflect an element of the base value of a reflected animatable attribute (being exposed through the methods on the points member of an SVGAnimatedPoints),
  2. represent the current translation of a given svg element (being exposed through the currentTranslate member on SVGSVGElement), or
  3. be detached, which is the case for DOMPoint objects created using their constructor or with createSVGPoint.

A DOMPoint object can be associated with a particular element. The associated element is used to determine which element's content attribute to update if the object reflects an attribute. Unless otherwise described, a DOMPoint object is not associated with any element.

A DOMPoint object can be designated as read only, which means that attempts to modify the object will result in an exception being thrown. When assigning to a read only DOMPoint's x, y, w or z IDL attribute, a NoModificationAllowedError must be thrown instead of updating the internal coordinate value.

Note that this applies only to the read-write DOMPoint interface; the DOMPointReadOnly interface, which is not used for reflecting the points attribute, will already throw an exception if an attempt is made to modify it.

When assigning to a writable DOMPoint's x, y, w or z IDL attribute, the following steps are run after updating the internal coordinate value:

  1. If the DOMPoint reflects an element of the base value of a reflected attribute, then reserialize the reflected attribute using the SVGPointList that reflects the attribute's base value.
  2. Otherwise, if the DOMPoint represents the current translation of an svg element and that element is the outermost svg element, then:
    1. Let [a b c d e f] be the 2x3 matrix that represents the document's magnification and panning transform.
    2. Let x and y be the x and y coordinates of the DOMPoint object, respectively.
    3. Set the document's magnification and panning transform to [a 0 0 d x y].

9.9.8. Interface SVGPolylineElement

An SVGPolylineElement object represents a polyline element in the DOM.

interface SVGPolylineElement : SVGGeometryElement {
};

SVGPolylineElement implements SVGAnimatedPoints;

9.9.9. Interface SVGPolygonElement

An SVGPolygonElement object represents a polygon element in the DOM.

interface SVGPolygonElement : SVGGeometryElement {
};

SVGPolygonElement implements SVGAnimatedPoints;
SVG 2 – 28 July 2016 TopContentsPreviousNextElementsAttributesProperties